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Abstract

Recently, based on a supersymmetric approach, new classes of conditionally exactly solvable problems have been found.
These systems exhibit a symmetry structure characterized by non-linear algebras. In this paper the associated ‘‘non-linear’’
coherent states are constructed and some of their properties are discussed in detail. © 1999 Published by Elsevier Science

B.V. All rights reserved.

1. Introduction

It is well known that only a few quantum mechan-
ical models admit exact solutions. The class of ex-
actly solvable models can, however, be enlarged by
using the technique of generating isospectral Hamil-
tonians [1]. Recently, another class of problems [2,3]
consisting of so-called conditionally exactly solvable
(CES) problems has emerged. The characteristic fea-
ture of this class is that their members are exactly
solvable problems when the parameters appearing in
the potential are fine tuned to assume some specific
numerical value or to lie in some range of values.

In some recent papers [4—6] several classes of
CES problems, whose construction is based on su-
persymmetric (SUSY) quantum mechanics [7] have
been found. It was shown [4,5] that the classes
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associated with the linear and radial harmonic oscil-
lator admit some non-linear algebra as their symme-
try algebra. Here our objective is to construct coher-
ent states corresponding to these CES problems and
examine some of their properties. We recall that
usually coherent states are constructed using as a
basis some Lie algebra [8]. In contrast, here the
coherent states are constructed over non-linear alge-
bras and we call them non-linear coherent states. In
this paper we limit ourselves to the class of CES
potentials associated with the radial harmonic oscil-
lator. To be more precise, we shall start with systems
having su(1,1)-dynamical symmetry and then con-
struct coherent states corresponding to the isospectral
partners which have a non-linear (i.e. deformed)
su(1,1) symmetry. In this context we recall that in
Ref. [9] Nieto et al. described a method of construct-
ing coherent and squeezed states for arbitrary quan-
tum mechanical potentials. In the present paper we
construct coherent states for hitherto unknown poten-
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tials having some particular symmetry properties. To
be a bit more explicit, we consider two cases. One in
which SUSY is broken and the other in which SUSY
is unbroken. In the former case non-linear coherent
states can be constructed over the entire Fock space.
Whereas in the latter case non-linear coherent states
are defined in a subspace of the Fock space.

This paper is organized as follows. In the next
section we briefly summarize the essentials of SUSY
quantum mechanics. In Section 3 we discuss the
CES potentials associated with the radial-harmonic-
oscillator model and its non-linear symmetry algebra.
Section 4 is devoted to the construction of the non-
linear coherent states. Basic properties of these states
are also discussed. Finally, in Section 5 we briefly
discuss the case of unbroken SUSY and in Section 6
some discussion and outlook is given.

2. SUSY quantum mechanics

To begin with we note that Witten’s model of
supersymmetric quantum mechanics consists of a
pair of Hamiltonians [7]

1 &

Hiz_z dxz"'Vi(x) (1)
acting on some suitable function space #. For the
purpose at hand we take the linear space of square-
integrable functions on the positive half-line with
Dirichlet boundary condition at the origin, #
={y€L*(R")|¢(0) =0}. The supersymmetric
partner potentials in (1) are given by
Vi(x) =3 [Wi(x) £ W'(0)] (2)
where W is the SUSY potential and W' =dW /d x.
In terms of the operators

1 d
A=—|—+W(x)],

T T )
AT : ( d w ) 3

=—|-——+ X

ol ) (3)

the Hamiltonians in (1) read H,=AA" and H =
A'A, respectively. Let us denote the eigenfunctions
and eigenvalues of H, by ¢,* and E*:

H g (x)=Ef¢p (x), n=012,.... (4

Then it can be shown [7] that in the case of broken
SUSY (we will mainly concentrate on this case) the
spectrum of H_ coincides with that of H, and both
are strictly positive:

El =E, =E >0, 4, (x)=E, 'A% (x),

Y, (x) =E, ?Ag, (x). (5)

Thus it is clear that if one of the Hamiltonians is
exactly solvable then the spectral properties of the
other one are also known, that is, it becomes exactly
solvable, too. This is the basic idea in the supersym-
metric construction methods of CES potentials. To
be a bit more explicit, in [4-6] it has been suggested
to construct SUSY potentials W in such a way that
V, becomes (under certain conditions imposed on
the parameters involved) one of the well-known
exactly solvable (e.g.shape-invariant) potentials and
thus giving rise, in general, to a class of CES
potentials V _.

3. A model with broken SUSY

Now as a specific model we consider the follow-
ing SUSY potential
y+1 uW(x
L)

W(x)=x+ . o

(6)
where u(x) =, F,(*5%,y+3,—x?) is a confluent
hypergeometric function and the two potential pa-
rameters have to obey the conditions y>0 and
&> —2y—2. This SUSY potential can be shown
[5.6] to give rise to

te+y+s. (7)
Clearly, V, represents the generalized radial har-

monic oscillator and the associated spectral proper-
ties of H, are well known

E, =2n+2y+2+4 &,

2n! e
0=y,

Xl g 2 pyta( 1), (8)
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Here L) denotes a generalized Laguerre polynomial
and we also note that SUSY is broken, that is,
exp{ +/dxW(x)} €.#. As a consequence, the
SUSY partner Hamiltonian A _ has the same eigen-
values E, and its eigenfunctions can be obtained
from (8) via (5):

Y, (x) =
() Van+4y+4+2¢e
d y+1 u'(x)
X|—— +x+ +
dx x u( x)
/2
N 2 n!
l,ll”‘(}(,')z &
(n+y+l+5)F(n+y+%)
X x¥T2e¥2/2 L3+3/2(x2)
u'(x
+——( ) : (9)
2 xu( x)

The corresponding CES potential explicitly reads

¥ (y+D(y+2)
i+

v )= = > +y—at+3
u'(x vy+1 u(x

= () 2x+2 4= () ;
u( x) X u( x)

(10)

In Ref. [5] we have shown that the symmetry
algebra underlying the eigenvalue problem associ-
ated with H_ is a non-linear one. To be more
explicit, with the help of the ladder operators for H ,
givenby ¢ =(d/dx+x)*/2 = (y+ D(y+2)/2x°,
which together with its adjoint ¢ and H_ close a
(linear) Lie algebra, one can introduce similar ladder
operators for H_ defined by D = A'cA and its ad-
joint D* = A'cA. These operators act on eigenstates
of H_ as follows:

DW’n‘(X) =t n_+1(x) ’
D (x) =f, ¢, (x). Dy (x)=0, (11)

where f, is given by

n

f.= 72\/n(n+y+%)(2n+2y +2+&)2n+2y+e) .
(12)

From these relations it also follows that
_ el no_ i
d’n(x):(f!fon) (D+) Wo(x)=(_i)

£
X[n!(y—l— %)n('y+ 1+ E)

X[y 2+ ;)”}I/Z(D*)"wa(x),
(13)

where (z), = I'(z + n)/I'(z) denotes Poch-
hammer’s symbol. The non-linear algebra closed by
the operators D, D" and H  explicitly reads

[H .D]=-2D, [H_,D'|=2D',
[D.D']=®(H_), (14)
where the non-linear structure function @ is given
by
O(H )=8H> —12(y+e+;)H?

+4Q2ey+ e’ +e+1)H . (15)

Actually, these types of algebras (having as structure
function a polynomial of degree p — 1 in one of the
generators) are called W, algebras. More explicitly,
the above algebra (14) is a polynomial deformed
su(1,1) algebra and has first been discussed in some
detail by Rocek [10]. For a discussion within a more
general approach see also Karassiov [11] and Katriel
and Quesne [12].

The quadratic Casimir operator for the non-linear
(cubic) algebra (14) reads

C=DD'—V(H_) (16)
where
fP(H?)z‘If(Hf)—?’(H,—Z). (17)

We note that in the above Fock-space representation
(11)«(13) we have the relations

V(H_) =ff3,,/2—y—,s/2=(H—_27" £)
X(H +1+¢e)(H +2)H_,
DDT=1I’(H,), D'D= Y(H_-2), (18)
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and, therefore, the Casimir operator (16) vanishes as
expected [11,12]. This, however, will in general not
be the case for non-Fock-space representations of the
algebra (14) [10-12].

4. The non-linear coherent states

We shall now construct coherent states corre-
sponding to the algebra in (14). At this point we note
that coherent states can be constructed following any
of the three methods [13]: (i) By applying the unitary
displacement operator to the ground state. (ii) Defin-
ing coherent states as eigenstate of the lowering
operator. (iii) Defining coherent states as minimum
uncertainty states. These three methods are generally
not equivalent and only in the case of the standard
harmonic oscillator, where the commutator of the
raising and lowering operator is the unit operator,
these three methods are equivalent. Here we shall
follow the second approach to construct non-linear
coherent states. Note that coherent states obtained in
this way are essentially Barut-Girardello coherent
states [14]. We also remark that the procedure fol-
lowing below is very similar to the construction of
coherent states associated with quantum groups [15].

Thus for the coherent state we make the ansatz

()= 2 ¢, n'ln), (19)
n=20

where the ¢,’s are real constants to be determined, w
18 an arbitrary complex number, and the ket |n) is a
short-hand notation for the eigenstate ¢, of H . In
order to distinguish the coherent states from the
eigenstates of H_  with denote them by |u)
throughout this paper. Now, by our definition (19)
should be an eigenstate of the lowering operator D
and so we have

Dlp)=plp)= Y cooy " frp 1) (20)
n=20

Comparing this result with definition (19) we obtain
the recurrence relation

c

n
Cot1 ™ ’
n+1

n=01.2,..., (21)

and consequently the constants ¢, for n>1 are
given by

€, =€ l—l(fl)il (22)

i=1

The remaining constant ¢, is determined via the
normalization of the coherent states:

(M|M)=C(2)[1+ Y (Hf,—"z)uz"]

n=1\vi=1

= (lul/16)"

X
= ¢y - z el
n=0 n!(y+§)”(y+]+5) (y +2+3]

n

(23)

Hence, the normalization constant ¢, = ¢,( 1) can be
expressed in terms of a generalized hypergeometric
function

Co—z( )

3 & 2 "'L:l
=,F; y+’5,y+l+5,'y+2+7:—

[e—

6

(24)

Another important property, namely. the resolu-
tions of unity can also be obtained for these non-lin-
ear coherent states. Let us assume that we have a
positive measure p on the complex plane such that

f@dp(u*,u)lﬂ)(Mﬂ- (25)

Making the polar decomposition = Vx ¢ = and the

ansatz dp( ™, u) =2¢_d:c) with ¢ being a yet
27 fa(wf;)

unknown density on the positive half-line. the above

resolution of unity (25) reduces to the relations

12] o

fxdxx”cr(x) =16"n!(y+3), (y— 1 -
0

£
X +2+—| . n=012.....
('y 2)”
(26)

In other words, o is a probability density on the
positive half-line defined via the moments given
above. For technical details on this so-called Stieltjes
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moment problem see [16]. Here we note that the
integral (26) may be viewed as Mellin transforma-
tion [17] of the density o. In other words, o is given
via the inverse Mellin transformation of its moments.
For the above moments this inverse transformation

leads (see Ref. [17] p.353) to a Meijer G-function
[18] and we explicitly have

G“(X 0 +l e +1+€)
™l 76 Y 2’7 2")’ >
AR . (27)
16F(y+—)r(y+1+f)1“(y+2+f)
2 2 2

\

o(x)=

Here we note that the radial density o(x)/c2(¥x) is
. 2
a rather smooth function of x =|u|” for all allowed
values of the parameters y> 0 and ¢ > —2y — 2.
In addition to this, we can show that these non-
linear coherent states are not orthogonal for u # v,

(mly) =co( m)eo(v)

F 3 i £ 5 e n'v
XF|y+ —y+1+—y+2+ —;——
YT Y 2 2716

+1. (28)

This together with the resolution of unity (25) shows
that the non-linear coherent states form an over-com-
plete basis in #.

We now proceed to examine some further proper-
ties of these non-linear coherent states. To do this we
define the following hermitian operators:

D+D'

- 29

In terms of these operators the non-linear algebra
(14) reads

[H ,X,]=-2iX,.

[H .X,]=2iX,,
[X,.%]= 5 @(H ). (30

The uncertainty relation for the two operators X,
and X, in some state |y ) € 7 is

(4X,)5 (4X))5 > 1 [(v [ X,. X, 1lw) (31)

where (AX,); = (| X7 1) — <¢f|X(-|w>2. We note
that the non-linear coherent states | &) in (19) having
property (20) always satisfy the equality sign in
(31). Note that in the notation used in [19] these
states are called intelligent states. However, it

2
s

can be shown that when the functional F(u)
- (( wul DDl ) —| ,ulz) attains its minimum for
some value of u, say u,, then the non-linear coher-
ent state | ) is a minimum uncertainty state corre-
sponding to the non-linear algebra (30).

5. The case of unbroken SUSY

Let us now briefly describe the situation when
SUSY is unbroken. In this case we choose

y+1 . u'(x) |
x u( x)
where now u(x)= F (5%, —vy—3,—x°). For a
more general case and the conditions on the parame-
ters & and y see Ref. [5]. It turns out that V_ again
represents the radial oscillator while V_ is a CES
potential. Note that essential details of this problem
can be obtained from the broken SUSY case by

replacing y by —vy— 2. However, the eigenvalues
for H_ are now given by

W(x)=x-— vy=>0, (32)

E,=0, E, ., =2n+1+¢, (33)

n

which coincide with the spectrum of H, with the
exception of the vanishing ground-state energy,
which is missing in H . due to unbroken SUSY. For
the explicit form of the corresponding eigenstates we
refer to [5].

Again we may define ladder operators D = A'cA
A" are now defined with the new SUSY potential
(32). They act on the eigenstates of H_ in the
following way:

Diln+1)=g, ., In+2), Dln+1)=g,ln),
D) =0=D"0), (34)

where

gl?

= —2\/n(n+ v+ %)(Zn —1+e)2n+l+e).
(35)

From the last relation in (34) it is clear that the
ground state is isolated in the sense that the non-lin-
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ear algebra is (non-trivially) realized over the excited
states only because g, = 0. The isolated ground state
forms a one-dimensional irreducible subspace and
thus provides a trivial realization of the non-linear
algebra. Note that the non-linear algebra closed by
D, D' and H_ is identical in form with (14).
However, in the structure function (15) we have to
replace y by —vy—2[5].

Now proceeding as in the case of broken SUSY,
we can find a superposition state which is an eigen-
state of the annihilation operator D. However, this
non-linear coherent state is now given by a superpo-
sition of the excited energy eigenstates only:

|7T)= Z dn"’?”|”+1>, (36)

n=0

where 7 is a complex number and the d,’s are given
by

d,=dy[Te/'. n=123....,
i=1

3 Inl?

27716 |
(37)

We note that the states |n) are not complete because
of the absence of the ground state in the superposi-
tion (36). We can, however, call this set of states
excited coherent states or photon-added coherent
states [20] because [{0|n)|* =0 for all n< C. Note
that lim, _, ,|n) =[1>. If the ground state, which is
also an eigenstate of D, is added we still have the
resolution of unity in the form

_2 5 1 &
dy=(n) =oFs| v+ 55""2‘»5

05 0] + f@dp(n* ) n)(nl=1, (38)

where 71 =Vx e'¢, dp(n*,n)=32_dx0()  and the
dg (/)
probability density o is again given via its moments:

fdxx"a(x)
0
5 e 1 e 3
=16"n!|ly+ — -+ = -+ =,
2,02 2/,\2 2],
n=0,12,.... (39)

As in the case of broken SUSY o can be expressed
in terms of a Meijer G-function and explicitly reads

X 3 e 1 & 1
G| =P+ 3.5 -53.5+5

2°2 272 2

o(x)=
16F(y+%)r

6. Final remarks

Starting from the cubic algebra formed by the
ladder operators of CES Hamiltonians related to the
radial harmonic oscillator we have constructed the
associated non-linear coherent states. These states
are different to those obtained recently [21] via the
Darboux transformation from standard (linear) co-
herent states [8]. The present non-linear coherent
states have been shown to be minimum uncertainty
states with respect to the X,-X, uncertainty relation.
In addition to that it can be shown that these states
obey all four requirements of ‘‘Coherent States for
Discrete Spectrum Dynamics™ recently formulated
by Klauder [22].

In the present approach we have constructed non-
linear coherent states as eigenstates of the annihila-
tion operator (method (ii)), which turn out to be
equivalent to those defined as minimum uncertainty
states (method (iii)). It would also be of interest to
find similar states which equalize other uncertainties
like H_-X, or H_-X,, and find their relations to the
present one. Another interesting possibility is to
construct in a similar way coherent states related to
other CES potentials. For example, those related to
the CES potentials which are SUSY partners of the
linear harmonic oscillator. Here the algebra formed
by the ladder operators closes a quadratic algebra
and SUSY is unbroken [4,5]. In fact, in doing so [23]
one finds other non-linear coherent states which
generalize those previously constructed by Fernandez
et al. [24].
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